Evaluation of the Effect of Stem Cell Therapy on Ischemic Heart Disease: A Systematic Review and Meta-analysis

Document Type : Review Article


1 Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran

2 Department of Cardiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

3 Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Department of Cardiology, Rajayi Heart Center, Iran University of Medical Sciences, Tehran, Iran


Background and aim: The present study was conducted to evaluate the effect of stem cell therapy on ischemic heart disease.
Material and methods: All international databases, PubMed, Scopus, Science Direct, ISI, Web of Knowledge, and Embase were examined, searching until April 2023 based on keywords related to the objectives of the study. The current study was conducted based on the PRISMA 2020 checklist, and the Google Scholar search engine was also used to find related articles. The 95% confidence interval mean differences were calculated using the fixed effect model. Stata/MP v.17 software was used to conduct the meta-analysis.
Results: After reviewing the abstracts of 320 articles, 98 articles were selected for full-text review, of which 20 articles were included in the meta-analysis. The left ventricular ejection fraction difference after stem-cell therapy compared to the control group was 8.29% (MD, 8.29 CI; 8.22,8.37; p<0.01). LVEF mean difference values in the ischemia/reperfusion MI model and chronic MI was 5.54% (MD, 5.54 CI; 5.43,5.65; p<0.01) and 10.65% (MD, 10.65 CI; 10.55,10.75; p<0.01).
Conclusions: Based on the present meta-analysis, stem cell therapy on ischemic heart disease improves left ventricular ejection fraction.


Main Subjects

[1]  Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. European Heart Journal. 2022;43(8):716-99. https://doi.org/10.1093/eurheartj/ehab892.
[2]  Zhang L, Yan K, Zhao H, Shou Y, Chen T, Chen J. Therapeutic effects and safety of early use of sacubitril/valsartan after acute myocardial infarction: A systematic review and meta-analysis. Ann. Palliat. Med. 2022;11:1017-27. https://doi.org/10.21037/apm-22-210.
[3]  Fathima SN. An Update on Myocardial Infarction. Current Research and Trends in Medical Science and Technology. 2021.
[4]  Lv J, Shi S, Zhang B, Xu X, Zheng H, Li Y, et al. Role of puerarin in pathological cardiac remodeling: a review. Pharmacological Research. 2022:106152. https://doi.org/10.1016/j.phrs.2022.106152.
[5]  Ciumărnean L, Milaciu MV, Negrean V, Orășan OH, Vesa SC, Sălăgean O, et al. Cardiovascular risk factors and physical activity for the prevention of cardiovascular diseases in the elderly. International Journal of Environmental Research and Public Health. 2022;19(1):207. https://doi.org/10.3390/ijerph19010207.
[6]  Matsumura Y, Zhu Y, Jiang H, D'Amore A, Luketich SK, Charwat V, Yoshizumi T, Sato H, Yang B, Uchibori T, Healy KE. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials. 2019;217:119289. https://doi.org/10.1016/j.biomaterials.2019.119289.
[7]  McLaughlin S, McNeill B, Podrebarac J, Hosoyama K, Sedlakova V, Cron G, et al. Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nature communications. 2019;10(1):4866. https://doi.org/10.1038/s41467-019-12748-8.
[8]  Duncan SE, Gao S, Sarhene M, Coffie JW, Linhua D, Bao X, et al. Macrophage activities in myocardial infarction and heart failure. Cardiology Research and Practice. 2020. https://doi.org/10.1155/2020/4375127.
[9]  Guglin M, Zucker MJ, Borlaug BA, Breen E, Cleveland J, Johnson MR, et al. Evaluation for heart transplantation and LVAD implantation: JACC council perspectives. Journal of the American College of Cardiology. 2020;75(12):1471-87. https://doi.org/10.1016/j.jacc.2020.01.034.
[10] Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: a promising frontier. Global Heart. 2022;17(1). https://doi.org/10.5334/gh.1098.
[11] Shareghi-Oskoue O, Aghebati-Maleki L, Yousefi M. Transplantation of human umbilical cord mesenchymal stem cells to treat premature ovarian failure. Stem Cell Research & Therapy. 2021;12(1):1-3. https://doi.org/10.1186/s13287-021-02529-w.
[12] Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, et al. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clinical and Translational Oncology. 2023:1-3. https://doi.org/10.1007/s12094-023-03115-7.
[13] Lopez-Yus M, García-Sobreviela MP, del Moral-Bergos R, Arbones-Mainar JM. Gene Therapy Based on Mesenchymal Stem Cells Derived from Adipose Tissue for the Treatment of Obesity and Its Metabolic Complications. International Journal of Molecular Sciences. 2023;24(8):7468. https://doi.org/10.3390/ijms24087468.
[14] Tugwell P, Tovey D. PRISMA 2020. Journal of Clinical Epidemiology. 2021;134:A5-6. https://doi.org/10.1016/j.jclinepi.2021.04.008.
[15] Mori D, Miyagawa S, Kawamura T, Yoshioka D, Hata H, Ueno T, et al. Mitochondrial Transfer Induced by Adipose-Derived Mesenchymal Stem Cell Transplantation Improves Cardiac Function in Rat Models of Ischemic Cardiomyopathy. Cell Transplantation. 2023;32:09636897221148457. https://doi.org/10.1177/09636897221148457.
[16] Wang Q, He X, Wang B, Pan J, Shi C, Li J, et al. Injectable collagen scaffold promotes swine myocardial infarction recovery by long-term local retention of transplanted human umbilical cord mesenchymal stem cells. Science China Life Sciences. 2021;64:269-81. https://doi.org/10.1007/s11427-019-1575-x.
[17] Winkler J, Lukovic D, Mester-Tonczar J, Zlabinger K, Gugerell A, Pavo N, et al. Quantitative hybrid cardiac [18F] FDG-PET-MRI images for assessment of cardiac repair by preconditioned cardiosphere-derived cells. Molecular Therapy-Methods & Clinical Development. 2020;18:354-66. https://doi.org/10.1016/j.omtm.2020.06.008.
[18] Sun S, Jiang Y, Zhen Z, Lai WH, Liao S, Tse HF. Establishing a swine model of post-myocardial infarction heart failure for stem cell treatment. MyJoVE Corporation; 2016(159):e60392. http://dx.doi.org/10.3791/60392.
[19] Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J, Laskary A, et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Reports. 2019;12(5):967-81. https://doi.org/10.1016/j.stemcr.2019.04.005.
[20] Crisostomo V, Baez C, Abad JL, Sanchez B, Alvarez V, Rosado R, et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Research & Therapy. 2019;10:1-7. https://doi.org/10.1186/s13287-019-1237-6.
[21] Haenel A, Ghosn M, Karimi T, Vykoukal J, Shah D, Valderrabano M, et al. Unmodified autologous stem cells at point of care for chronic myocardial infarction. World Journal of Stem Cells. 2019;11(10):831-58. https://doi.org/10.4252/wjsc.v11.i10.831.
[22] Liao S, Zhang Y, Ting S, Zhen Z, Luo F, Zhu Z, et al. Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem cell research & therapy. 2019;10(1):1-3. https://doi.org/10.1186/s13287-019-1183-3.
[23] Ishigami M, Masumoto H, Ikuno T, Aoki T, Kawatou M, Minakata K, et al. Human iPS cell-derived cardiac tissue sheets for functional restoration of infarcted porcine hearts. PLoS One. 2018;13(8):e0201650. https://doi.org/10.1371/journal.pone.0201650.
[24] Mori D, Miyagawa S, Yajima S, Saito S, Fukushima S, Ueno T, et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation. 2018;102(12):2012-24. https://doi.org/10.1097/TP.0000000000002385.
[25] Dariolli R, Naghetini MV, Marques EF, Takimura CK, Jensen LS, Kiers B, et al. Allogeneic pASC transplantation in humanized pigs attenuates cardiac remodeling post-myocardial infarction. PLoS One. 2017;12(4):e0176412. https://doi.org/10.1371/journal.pone.0176412.
[26] Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Funakoshi S, et al. Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Scientific reports. 2017;7(1):8824. https://doi.org/10.1038/s41598-017-08869-z.
[27] Kim MC, Kim YS, Kang WS, Lee KH, Cho M, Hong MH, et al. Intramyocardial injection of stem cells in pig myocardial infarction model: the first trial in Korea. Journal of Korean Medical Science. 2017;32(10):1708-12. https://doi.org/10.3346/jkms.2017.32.10.1708.
[28] Alestalo K, Korpi R, Mäkelä J, Lehtonen S, Mäkelä T, Yannopoulos F, et al. High number of transplanted stem cells improves myocardial recovery after AMI in a porcine model. Scandinavian Cardiovascular Journal. 2015;49(2):82-94. https://doi.org/10.3109/14017431.2015.1018311.
[29] Bobi J, Solanes N, Fernández-Jiménez R, Galán-Arriola C, Dantas AP, Fernández-Friera L, et al. Intracoronary administration of allogeneic adipose tissue–derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction. Journal of the American Heart Association. 2017;6(5):e005771. https://doi.org/10.1161/JAHA.117.005771.
[30] Tseliou E, Kanazawa H, Dawkins J, Gallet R, Kreke M, Smith R, et al. Widespread myocardial delivery of heart-derived stem cells by nonocclusive triple-vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology. PLoS One. 2016;11(1):e0144523. https://doi.org/10.1371/journal.pone.0144523.
[31] Cai M, Shen R, Song L, Lu M, Wang J, Zhao S, et al. Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Scientific reports. 2016;6(1):28250. https://doi.org/10.1038/srep28250.
[32] Liu Y, Li L, Su Q, Liu T, Ma Z, Yang H. Ultrasound‐Targeted Microbubble Destruction Enhances Gene Expression of micro RNA‐21 in Swine Heart via Intracoronary Delivery. Echocardiography. 2015;32(9):1407-16. https://doi.org/10.1111/echo.12876.
[33] Kanazawa H, Tseliou E, Malliaras K, Yee K, Dawkins JF, De Couto G, et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circulation: Heart Failure. 2015;8(2):322-32. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001484.
[34] Lee HW, Lee HC, Park JH, Kim BW, Ahn J, Kim JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model. Yonsei Medical Journal. 2015;56(6):1522-9.
[35] Van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyöngyösi M, Sluijter JP, et al. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovascular Research. 2011;91(4):649-58. https://doi.org/10.1093/cvr/cvr113.
[36] Spannbauer A, Mester-Tonczar J, Traxler D, Kastner N, Zlabinger K, Hašimbegović E, et al. Large animal models of cell-free cardiac regeneration. Biomolecules. 2020;10(10):1392. https://doi.org/10.3390/biom10101392.
[37] Müller P, Lemcke H, David R. Stem cell therapy in heart diseases–cell types, mechanisms and improvement strategies. Cellular Physiology and Biochemistry. 2018;48(6):2607-55. https://doi.org/10.1159/000492704.
[38] Xu JY, Liu D, Zhong Y, Huang RC. Effects of timing on intracoronary autologous bone marrow-derived cell transplantation in acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Research & Therapy. 2017;8(1):1-3. https://doi.org/10.1186/s13287-017-0680-5.