Evaluation of the Clinical Outcome of Carbon Nanoparticles on Thyroid Cancer: A Systematic Review and Meta-analysis

Document Type : Review Article

Authors

1 Department of Internal Medicine, Noor Iranian Polyclinic, Muscat, Oman

2 Department of Anesthesiology and Critical Care, Khoula Hospital, Muscat, Oman

Abstract

Background and aim: An evaluation of the clinical outcome of thyroid cancer using carbon nanoparticles was conducted in this study.
Material and methods: PubMed, Scopus, Science Direct, ISI Web of Knowledge, and Embase were examined for all articles published in international databases. A keyword search was conducted until January 2023 based on the objectives of study. The current study was conducted based on the PRISMA 2020 checklist, and related articles were also found using Google Scholar. The fixed effect model calculated the 95% confidence interval risk ratio and mean differences. Stata/MP v.17 software was used to conduct the meta-analysis.
Results: A meta-analysis of 17 articles was conducted after reviewing the abstracts of 333 articles; 49 articles were selected for full-text review. The mean difference of lymph nodes harvested between the carbon nanoparticles and control groups was 1.31 (MD, 1.31 95% CI 1.20, 1.42; p<0.001). The odds ratio of parathyroid glands removed unintentionally between the carbon nanoparticles and control groups was -0.84 (OR, -0.84 95% CI -1.21, -0.47; p<0.001).
Conclusions: Based on the present meta-analysis, the administration of carbon nanoparticles during surgery can perform better in identifying and harvesting lymph nodes. Using carbon nanoparticles can reduce the chance of accidental parathyroid gland removal during surgery.

Keywords

Main Subjects


[1]  Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer. Frontiers in endocrinology. 2020;11:82. https://doi.org/10.3389/fendo.2020.00082.
[2]  Qiu Y, Xing Z, Xiang Q, Yang Q, Su A, Luo Y. Duration of parathyroid function recovery in patients with protracted hypoparathyroidism after total thyroidectomy for papillary thyroid carcinoma. Frontiers in Endocrinology. 2021;12:665190. https://doi.org/10.3389/fendo.2021.665190.
[3]  Seib CD, Sosa JA. Evolving understanding of the epidemiology of thyroid cancer. Endocrinology and Metabolism Clinics. 2019;48(1):23-35. https://doi.org/10.1016/j.ecl.2018.10.002.
[4]  Huang J, Ngai CH, Deng Y, Pun CN, Lok V, Zhang L, Xu Q, Lucero-Prisno DE, Xu W, Zheng ZJ, Elcarte E. Incidence and mortality of thyroid cancer in 50 countries: a joinpoint regression analysis of global trends. Endocrine. 2023:1-1. https://doi.org/10.1007/s12020-022-03274-7.
[5]  Sharifovna YH. Thyroid Cancer Diagnostics, Classification, Staging. Ijtimoiy fanlarda innovasiya onlayn ilmiy jurnali. 2021;1(5):63-9.
[6]  Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M. Update on fundamental mechanisms of thyroid cancer. Frontiers in endocrinology. 2020;11:102. https://doi.org/10.3389/fendo.2020.00102.
[7] Ngo DQ, Tran TD, Le DT, Ngo QX, Van Le Q. Transoral endoscopic modified radical neck dissection for papillary thyroid carcinoma. Annals of Surgical Oncology. 2021;28:2766. https://doi.org/10.1245/s10434-020-09466-7.
[8]  Ahn JH, Kwak JH, Yoon SG, Yi JW, Yu HW, Kwon H, Kim SJ, Lee KE. A prospective randomized controlled trial to assess the efficacy and safety of prophylactic central compartment lymph node dissection in papillary thyroid carcinoma. Surgery. 2022;171(1):182-9. https://doi.org/10.1016/j.surg.2021.03.071.
[9]  Liu P, Tan J, Tan Q, Xu L, He T, Lv Q. Application of carbon nanoparticles in tracing lymph nodes and locating tumors in colorectal cancer: a concise review. International Journal of Nanomedicine. 2020;15:9671-81.
[10] Yusoff AA, Khair SZ, Abdullah WS, Abd Radzak SM, Abdullah JM. Somatic mitochondrial DNA D-loop mutations in meningioma discovered: a preliminary data. Journal of cancer research and therapeutics. 2020;16(6):1517-21. https://doi.org/10.4103/jcrt.JCRT_1132_16.
[11] Liang S, Wang Z, Chen J, Yang X, Liang X, Sun X, Li X, Zhou R, Li Y, Wang J. Carbon nanoparticles combined with indocyanine green for sentinel lymph node detection in endometrial carcinoma. Journal of Surgical Oncology. 2021;124(3):411-9. https://doi.org/10.1002/jso.26518.
[12] Zhang X, Shen YP, Li JG, Chen G. Clinical feasibility of imaging with indocyanine green combined with carbon nanoparticles for sentinel lymph node identification in papillary thyroid microcarcinoma. Medicine. 2019;98(36):e16935. https://doi.org/10.1097/MD.0000000000016935.
[13] Liu J, Xu C, Wang R, Han P, Zhao Q, Li H, Bai Y, Liu L, Zhang S, Yao X. Do carbon nanoparticles really improve thyroid cancer surgery? A retrospective analysis of real-world data. World Journal of Surgical Oncology. 2020;18(1):1-9. https://doi.org/10.1186/s12957-020-01852-5.
[14] Zhang D, Tang Q, Chen J, Wei Y, Chen J. Novel Development of Nanoparticles—A Promising Direction for Precise Tumor Management. Pharmaceutics. 2023;15(1):24. https://doi.org/10.3390/pharmaceutics15010024.
[15] Xue S, Ren P, Wang P, Chen G. Short and long-term potential role of carbon nanoparticles in total thyroidectomy with central lymph node dissection. Scientific reports. 2018;8(1):11936. https://doi.org/10.1038/s41598-018-30299-8.
[16] Spartalis E, Giannakodimos A, Athanasiadis DI, Chrysikos D, Paschou SA, Schizas D, Patelis N, Papasilekas T, Themistoklis K, Spartalis M, Troupis T. The potential role of carbon nanoparticles in lymph node tracing, recurrent laryngeal nerve identification and parathyroid preservation during thyroid surgery: a systematic review. Current Pharmaceutical Design. 2021;27(21):2505-11. https://doi.org/10.2174/1381612826666200922154824.
[17] Tugwell P, Tovey D. PRISMA 2020. Journal of Clinical Epidemiology. 2021;134:A5-6. https://doi.org/10.1016/j.jclinepi.2021.04.008.
[18] Elfeky A, Gillies K, Gardner H, Fraser C, Ishaku T, Treweek S. Non-randomised evaluations of strategies to increase participant retention in randomised controlled trials: a systematic review. Systematic reviews. 2020;9(1):1-13. https://doi.org/10.1186/s13643-020-01471-x.
[19] Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;343. https://doi.org/10.1136/bmj.d5928.
[20] Tao S, Zhang Z, Li L, Yuan X, Chen H, Zhang Y, Fu C. Characteristics of systematic lymph node dissection and influencing factors of sentinel lymph node biopsy using carbon nanoparticles in endometrial carcinoma: a single-center study. World Journal of Surgical Oncology. 2023;21(1):39. https://doi.org/10.1186/s12957-023-02922-0.
[21] Chen PP, Zhang X, Li JG, Chen G. Predictors of impaired effectiveness of carbon nanoparticle-based central lymph node tracing in patients who underwent surgery for papillary thyroid cancer: A retrospective cohort study. Medicine. 2022;101(41):e31257. https://doi.org/10.1097/MD.0000000000031257.
[22] Ouyang H, Xia F, Zhang Z, Cong R, Li X. Preoperative application of carbon nanoparticles in bilateral axillo-breast approach robotic thyroidectomy for papillary thyroid cancer. Gland Surgery. 2021;10(12):3188-99. https://doi.org/10.21037/gs-21-671.
[23] Li T, Ma Z, Lu C, Mu R, Wang H, Luo Y, Lv J, Hou Z, Zhang Q, Cheng X, Liu X. Application of carbon nanoparticles combined with intraoperative neuromonitoring in papillary thyroid microcarcinoma surgery. American Journal of Otolaryngology. 2021;42(1):102790. https://doi.org/10.1016/j.amjoto.2020.102790.
[24] Chen Y, Zhang G, Lin Y, Zhang G, Gao J. The advantages of carbon nanoparticles in level VII lymph node dissection in patients with papillary thyroid cancer. Gland Surgery. 2021;10(6):2028-36. https://doi.org/10.21037/gs-21-281.
[25] Rao S, Wang Z, Pan C, Wang Y, Lin Z, Pan Z, Yu J. Preliminary study on the clinical significance and methods of using carbon nanoparticles in endoscopic papillary thyroid cancer surgery. Contrast Media & Molecular Imaging. 2021. https://doi.org/10.1155/2021/6652315.
[26] He J, Zhang C, Zhang Z, Xia F. Evaluation of the clinical value of carbon nanoparticles in endoscopic thyroidectomy and prophylactic central neck dissection through total mammary areolas approach for thyroid cancer. World J Surg Oncol. 2021;19(1):320. https://doi.org/10.1186/s12957-021-02427-8.
 [27] Ma JJ, Zhang DB, Zhang WF, Wang X. Application of nanocarbon in breast approach endoscopic thyroidectomy thyroid cancer surgery. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2020;30(5):547-52. https://doi.org/10.1089/lap.2019.0794.
[28] Min L, Lang BH, Chen W, Ai Q, Jiang J, Huang ZH. Utility of activated carbon nanoparticle (CNP) during total thyroidectomy for clinically nodal positive papillary thyroid carcinoma (PTC). World Journal of Surgery. 2020;44:356-62. https://doi.org/10.1007/s00268-019-05113-9.
[29] Xu Z, Meng Y, Song J, Wang Y, Yao X. The role of carbon nanoparticles in guiding central neck dissection and protecting the parathyroid in transoral vestibular endoscopic thyroidectomy for thyroid cancer. Videosurgery and Other Miniinvasive Techniques. 2020;15(3):455-61. https://doi.org/10.5114/wiitm.2019.89658.
[30] Zhang D, Fu Y, Dionigi G, Hu Y, Zhang J, Wang T, Xue G, Sun H. A randomized comparison of carbon nanoparticles in endoscopic lymph node dissection via the bilateral areola approach for papillary thyroid cancer. Surgical Laparoscopy Endoscopy & Percutaneous Techniques. 2020;30(4):291-9. https://doi.org/10.1097/SLE.0000000000000793.
[31] Liu Y, Li L, Yu J, Fan YX, Lu XB. Carbon nanoparticle lymph node tracer improves the outcomes of surgical treatment in papillary thyroid cancer. Cancer Biomarkers. 2018;23(2):227-33. https://doi.org/10.3233/CBM-181386.
[32] Xu XF, Gu J. The application of carbon nanoparticles in the lymph node biopsy of cN0 papillary thyroid carcinoma: A randomized controlled clinical trial. Asian journal of surgery. 2017;40(5):345-9. https://doi.org/10.1016/j.asjsur.2015.11.004.
[33] Shi C, Tian B, Li S, Shi T, Qin H, Liu S. Enhanced identification and functional protective role of carbon nanoparticles on parathyroid in thyroid cancer surgery: A retrospective Chinese population study. Medicine. 2016;95(46):e5148. https://doi.org/10.1097/MD.0000000000005148.
[34] Wang B, Du ZP, Qiu NC, Liu ME, Liu S, Jiang DZ, Zhang W, Qiu M. Application of carbon nanoparticles accelerates the rapid recovery of parathyroid function during thyroid carcinoma surgery with central lymph node dissection: A retrospective cohort study. International Journal of Surgery. 2016;36(A):164-9. https://doi.org/10.1016/j.ijsu.2016.10.037.
[35] Hao RT, Chen J, Zhao LH, Liu C, Wang OC, Huang GL, Zhang XH, Zhao J. Sentinel lymph node biopsy using carbon nanoparticles for Chinese patients with papillary thyroid microcarcinoma. European Journal of Surgical Oncology (EJSO). 2012;38(8):718-24. https://doi.org/10.1016/j.ejso.2012.02.001.
[36] Miccoli P, Bakkar S. Surgical management of papillary thyroid carcinoma: an overview. Updates in surgery. 2017;69(2):145-50. https://doi.org/10.1007/s13304-017-0449-5.
[37] Matt C, Hess T, Benlian A. Digital transformation strategies. Business & information systems engineering. 2015;57:339-43. https://doi.org/10.1007/s12599-015-0401-5.
[38] Ling AO, Toong LY, Omar TA, Ghauth S. Effectiveness of Direct Transcricothyroid Electromyographic Monitoring in Thyroidectomy Surgery. Indian Journal of Otolaryngology and Head & Neck Surgery. 2023:1-7. https://doi.org/10.1007/s12070-022-03336-2.
[39] Xu S, Li Z, Xu M, Peng H. The role of carbon nanoparticle in lymph node detection and parathyroid gland protection during thyroidectomy for non-anaplastic thyroid carcinoma-a meta-analysis. Plos one. 2020;15(11):e0223627. https://doi.org/10.1371/journal.pone.0223627.
[40] Gao B, Tian W, Jiang Y, Zhang S, Guo L, Zhao J, Zhang G, Hao S, Xu Y, Luo D. Application of carbon nanoparticles for parathyroid protection in reoperation of thyroid diseases. International journal of clinical and experimental medicine. 2015;8(12):22254-61.